
Digital Object Identifier (DOI) 10.1140/epjc/s2005-02282-1
Eur. Phys. J. C 42, 109–118 (2005) THE EUROPEAN

PHYSICAL JOURNAL C

Temperature dependence of gluon and ghost propagators
in Landau-gauge Yang–Mills theory below the phase transition
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Abstract. The Dyson–Schwinger equations of Landau-gauge Yang–Mills theory for the gluon and ghost
propagators are investigated. Numerical results are obtained within a truncation scheme which has proven
to be successful at vanishing temperature. For temperatures up to 250 MeV we find only minor quantitative
changes in the infrared behavior of the gluon and ghost propagators. The effective action calculated from
these propagators is temperature independent within the numerical uncertainty.
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1 Introduction

It is by now well established that for increasing tempera-
ture QCD undergoes a phase transition from a confining to
a deconfined phase. Despite the phenomenological success
of QCD, the understanding of the phenomenon of con-
finement is still far from being satisfactory. The same is
true for the deconfined phase: the picture of a quark–gluon
plasma implies certain properties of quarks and gluons at
high temperatures that have not yet been convincingly
demonstrated.

This state of affairs is due to the fact that both, con-
finement and deconfinement, are not describable by per-
turbation theory. Thus, investigations of this and related
topics have to rely on non-perturbative methods. Lattice
Monte Carlo simulations of the Euclidean path integral
provide the most direct approach and have provided con-
vincing evidence that the pure SU(3) Yang–Mills theory
undergoes a phase transition at a critical temperature
Tc ≈ 270 MeV; see e.g. [1]. The confining properties as
measured by the (temporal) Wilson-loop change across
this transition, which indicates that quarks are, at least
partially, deconfined in the high-temperature phase. The
fate of gluon confinement, on the other hand, is much less
clear.

At vanishing temperature, gluon confinement has been
related to the infrared behavior of the gluon and ghost
propagators in covariant gauges; for reviews see e.g. [2,3]
or for a compact presentation of this issue [4]. These prop-
agators have been studied in lattice calculations, see [5]
and references therein, employing renormalization group
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techniques [6] and Dyson–Schwinger equations (DSEs);
see [7] and references therein. The results of these different
methods agree qualitatively and quantitatively. The gluon
propagator is infrared suppressed and the ghost propa-
gator is infrared enhanced. From the latter property the
Kugo–Ojima confinement criterion [9] follows. Further-
more, it is equivalent to Zwanziger’s boundary condition
on the Gribov horizon [10] (see also [11]) which guarantees
that only field configurations within the first Gribov hori-
zon [12] contribute. In this approach, the occurrence of
gluon confinement is thus related to the Gribov problem:
due to the long-range nature of Faddeev–Popov ghosts not
only Gribov copies are avoided but also the long-range
propagation of transverse gluons is inhibited. It is there-
fore interesting to learn how such a picture changes with
temperature.

Here, we will present the solution of coupled DSEs for
the gluon and ghost propagators at non-vanishing tem-
perature T �= 0. We focus on approaching the phase tran-
sition from the low-temperature confining phase. An in-
vestigation studying the high-temperature limit has been
presented elsewhere [13]. A solution on a space-time torus
will be given because the use of a compact manifold pro-
vides a natural infrared regulator (comparable to the one
present in lattice calculations).

This paper is organized as follows: first, we briefly out-
line the finite-temperature framework for the DSEs. For
the sake of making the presentation self-contained we dis-
cuss in Sect. 3 the truncation scheme employed. We then
present the numerical results for the propagators. These
are then used to calculate the effective action [14,15] in
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our truncation scheme. In the last section we conclude.
Technical details are deferred to two appendices.

2 Gluon and ghost Dyson–Schwinger
equations at non-vanishing temperatures

Throughout this investigation the imaginary-time formal-
ism, see e.g. [16,17], is employed. This implies using peri-
odic boundary conditions in “time” not only for the gluon
fields but also for the ghost fields (despite their Grass-
mannian nature). In four-momentum space this leads to a
sum over the discrete Matsubara frequencies ωn = 2πnT
rather than a continuous integral:

∫
d4q

(2π)4
f(q) → T

+∞∑
n=−∞

∫
d3q

(2π)3
f(ωn, q) , (1)

involving the three-momentum q. Here, we have chosen to
study the system in the rest frame of the heat bath thus
working in a formalism where Poincaré covariance is not
manifest.

At non-vanishing temperature the full gluon propa-
gator acquires a more complicated tensor structure. In
Landau-gauge, which we use throughout this manuscript,
the gluon propagator is purely transverse with respect to
the gluon four-momentum which, at zero temperature, im-
plies that it can be described by one scalar function. At
non-vanishing temperatures two independent tensor struc-
tures exist, one longitudinal and one transverse to the heat
bath. The decomposition for the rest frame of the heat
bath [16,17] is explicitly given by

Dab
µν(k) =

δab

k2

(
PT µν(k)Zm(k0, |k|)
+PL µν(k)Z0(k0, |k|)), (2)

PT ij(k) = δij − kikj

k2 , PT 00 = PT i0 = PT 0i = 0 ,

PL µν(k) = Pµν(k) − PT µν(k), Pµν = δµν − kµkν

k2 ,(3)

i, j = 1, 2, 3; µ, ν = 1, 2, 3, 4,

with k2 = k2
0 + k2. The ghost propagator is a Lorentz

scalar and does not acquire further structures:

Dab
G (k) = −δab

k2 G(k0, |k|). (4)

Another major change in the renormalized DSEs as com-
pared to the ones for zero temperature is the substitution
(1). The equations for the ghost and gluon propagator,
DG(k) and Dµν(k), respectively, read

D−1
G (k) = −Z̃3k

2 + g2NCZ̃1T

×
+∞∑

n=−∞

∫
d3q

(2π)3

×ikµDµν(k − q)Gν(k, q)DG(q) , (5)

D−1
µν (k) = Z3

(
δµν − kµkν

k2

)
k2

− g2NCZ̃1T

+∞∑
n=−∞

∫
d3q

(2π)3
iqµDG(p)DG(q)Gν(p, q)

+
1
2
g2NCZ1T

×
+∞∑

n=−∞

∫
d3q

(2π)3
Γ (0)

µρα(k,−p, q)Dαβ(q)Dρσ(p)

×Γβσν(−q, p, −k)
+ . . . , (6)

with p = k+q. Contributions involving the four-point ver-
tex are not explicitly given here. The color structure is also
suppressed. Γ

(0)
αβγ denotes the tree-level three-gluon ver-

tex, Γαβγ the full three-gluon-vertex function and Gν the
full ghost–gluon vertex. Here, the following renormaliza-
tion constants appear: Z3 for the gluon wave function, Z̃3
for the ghost wave function, Z1 for the three-gluon vertex
Γαβγ and Z̃1 for the ghost–gluon vertex Gν . In Landau-
gauge one has Z̃1 = 1 [18]. This non-renormalization of
the ghost–gluon vertex is crucial for the success of the em-
ployed truncation scheme [19,20]. Following [21] a MOM-
renormalization scheme will be used. Thus the renormal-
ization constants depend on the renormalization scale µ
and the ultraviolet cutoff; for details see below.

At vanishing temperature, the DSEs on a torus provide
a good tool to study finite volume and periodic boundary
conditions effects and allow one to compare to results of
continuum methods and the lattice. To extend this ap-
proach to finite temperature one can directly apply the
procedure described in [22] by allowing for a different size
of the torus in time direction. The corresponding length is
determined by the temperature, L0 = β = 1/T (kB = 1)
with L0 � L, L being the size of the torus in the spatial
directions. Thus we substitute

T
+∞∑

n=−∞

∫
d3q

(2π)3
→ T

L3

+∞∑
n=−∞

∑
j1,j2,j3

. (7)

In order to solve the equations numerically, one needs an
ultraviolet momentum cutoff Λ. As we use the same renor-
malization procedure employed at T = 0 this should be an
O(4) invariant cutoff also at finite temperature. The inte-
grals are replaced by the Matsubara sums, and the system
of equations is solved self-consistently for a finite number
of sampling points of the dressing functions.

In the limit of infinite spatial volume, the effective tem-
perature on the torus is

T = 1/L0. (8)

For small tori this equality can be affected by finite-size
effects which will be discussed in Appendix B, confirming
(8) to be a good estimate.
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3 The truncation scheme

Since the DSEs form an infinite system of hierarchically
coupled integral equations, one has to truncate the sys-
tem to make it tractable. We employ a truncation scheme
which has been tested in various ways at zero tempera-
ture [22]. The consequences of such truncations have been
studied extensively in the literature; see [2] for a review. In
the ultraviolet the truncation is fixed by requiring consis-
tency with perturbation theory. In the infrared very likely
only the behavior of the ghost–gluon vertex is relevant [19,
20,23]. A bare ghost–gluon vertex as employed here is in
agreement with recent studies using DSEs [24] and lattice
methods [25]. Thus the truncation is probably even exact
in the infrared, as has been argued using stochastic quan-
tization [11]. Thus only at mid-momenta truncation de-
pendent effects are relevant, but are strongly constrained.
The results in the vacuum are furthermore in very good
agreement with lattice calculations [26].

In this scheme only the propagators of the ghost and
the gluon fields are determined self-consistently, while full
vertex functions either have to be constructed or are re-
placed by bare ones. As already mentioned, the gauge pa-
rameter is fixed to the Landau-gauge value. The Landau-
gauge is a fixed point of the renormalization group and
thus the gauge parameter is not renormalized. Further-
more, contributions from the four-gluon vertex are ne-
glected; this is justified for two reasons. In the first place,
the tadpole diagram only contributes a scale-free, di-
vergent constant (in Landau-gauge) in the perturbative
regime, which drops out by renormalization. Secondly, it
can be argued that the two-loop diagrams are sub-leading
in the infrared, if the three- and four-gluon vertices do not
acquire highly singular dressings. Thus we are left with the
three-gluon vertex and the ghost–gluon vertex which are
not determined by the propagator equations. Since the
ghost–gluon vertex is not ultraviolet divergent in Landau-
gauge, replacing the full vertex by the tree-level one pre-
serves the one-loop anomalous dimensions of the dressing
functions. In the truncation scheme used, we simply set

Gν(q, p) = iqν . (9)

For the three-gluon vertex the following construction pro-
vides the correct one-loop behavior in the ultraviolet for
the propagators without perturbing their infrared behav-
ior [8]

Γρνσ(k, p, q)

= F (k, p, q)Γ (0)
ρνσ(k, p, q), (10)

F (k, p, q)

=
1

Z1(µ2, Λ2)
G(k)(−2−6δ)

Z(k)(1+3δ)

G(p)(−2−6δ)

Z(p)(1+3δ) , (11)

with

Z(k) :=
1
3
Z0(k) +

2
3
Zm(k) , (12)

Γ (0)
ρνσ(k, p, q) = −i(k − p)ρδµν − i(p − q)µδνρ

−i(q − k)νδµρ , (13)

and δ = −9/44 being the anomalous dimension of the
ghost propagator. In the vertex ansatz (10) we have cho-
sen the linear combination of (12) for the two-gluon dress-
ing function, because it corresponds closest to the zero-
temperature dressing of the gluon propagator. The ver-
tex construction (10), taken over from vanishing temper-
ature studies, should also be sufficient at finite tempera-
tures, since it mainly affects the ultraviolet regime which
is nearly temperature independent up to very high tem-
peratures.

The truncation described causes spurious longitudinal
contributions to the gluon polarization. These spurious
terms are quadratically divergent. It is possible to iso-
late the part without quadratic divergences by contracting
with the traceless Brown–Pennington projector [27],

R(k) = δµν − 4
kµkν

k2 , (14)

which projects out terms proportional to δµν . However,
this projector interferes with the infrared analysis. In or-
der to take care of this problem at zero temperature, the
gluon equation is contracted with the transverse projector

P(k) = δµν − kµkν

k2 , (15)

and a quadratically divergent tadpole-like tensor structure
is subtracted from the gluon loop in the gluon DSE. It is
given by [8]

Qµν =
5
4

1
k2q2 δµν . (16)

At non-vanishing temperatures there are other possible
quadratically divergent tensor structures. They mainly gi-
ve different contributions in the infrared which are sub-
leading as long as the gluon dressing functions are not in-
frared divergent. The infrared exponents are only weakly
dependent on the actual choice [22,8]. Thus we subtract
the term (16) to remove all spurious divergences. We are
then left with the intrinsic logarithmic divergences which
are renormalized in the MOM-scheme as described in [22].

The ansätze for the vertices (9) and (10) are inserted
into (6) and (5). After contracting the gluon equation with
the heat-bath transversal and longitudinal projectors (3),
one arrives at the following three coupled equations for
the three scalar dressing functions G, Zm and Z0 defined
in (2) and (4):

1
G(k)

= Z̃3 + g2NCZ̃1T

+∞∑
n=−∞

∫
d3q

(2π)3
G(q)

k2q2(k − q)2

× {ATZm(k − q) + ALZ0(k − q)} , (17)

1
Zm(k)

= Z3 − 1
2
g2NCZ̃1T

+∞∑
n=−∞

∫
d3q

(2π)3
G(q)G(p)
k2q2p2 R

+
1
2
g2NCZ1T

+∞∑
n=−∞

∫
d3q

(2π)3
F (q, p, k, Z, G, Z1)

k2q2p2
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Fig. 1. Diagrammatic representation of the propagator DSEs in the truncation scheme used here. Wiggly lines denote heat-
bath transverse gluon propagators, double-dashed lines are heat-bath longitudinal propagators and dashed lines represent ghost
propagators. Blobs indicate dressed propagators and vertex functions, respectively

× [MTZm(q)Zm(p) + M1Z0(q)Zm(p)
+ M2Z0(p)Zm(q) + MLZ0(q)Z0(p)] , (18)

1
Z0(k)

= Z3 − g2NCZ̃1T

+∞∑
n=−∞

∫
d3q

(2π)3
G(q)G(p)
k2q2p2 P

+ g2NCZ1T

+∞∑
n=−∞

∫
d3q

(2π)3
F (q, p, k, Z, G, Z1)

k2q2p2

× [NTZm(q)Zm(p) + N1Z0(q)Zm(p)
+ N2Z0(p)Zm(q) + NLZ0(q)Z0(p)] . (19)

Note that q0 = ωn = 2πnT . Herein color indices have
been contracted and the tensor δab has been separated.
The expressions for the kernel functions AT, AL, R, MT,
M1, M2, ML, P and NT, N1, N2, NL can be found in
Appendix A; see (A.1)–(A.12). A graphical representation
for these equations is given in Fig. 1.

The MOM-renormalization scheme, applied for van-
ishing temperature, is used here. This amounts to solv-
ing subtracted equations, i.e. the respective values at the
renormalization scale are subtracted on the LHS and RHS.
The renormalization conditions are then used to calculate
the renormalization constants. The introduction of a fi-
nite temperature does not give rise to any novel diver-
gences [16]. However, finite, temperature-dependent mod-
ifications of the renormalization constants occur. Thus we
impose the same renormalization condition for both the
transverse gluon propagator and the longitudinal one and
determine a renormalization constant for each.

Due to the compactification of space-time, the inte-
grals become discrete, infinite sums. To solve the equations
numerically one has to introduce a cutoff Λ and sum only
up to this cutoff. The integral equations are solved self-
consistently. In order to speed up convergence a Newton–
Raphson iteration is used. As it converges only locally we
start with results from zero temperature and increase the
temperature in small steps. The method will be explained
in more detail elsewhere.

4 Results

In order to display the temperature dependence of the
resulting dressing functions we will show the linear com-
bination (12) of the dressing functions Z0 and Zm as well
as their difference

∆Z = Z0 − Zm. (20)

In a first step only the zeroth Matsubara mode is dis-
cussed here; the other modes will be presented below. The
combination Z in (12) is the natural one to compare with
zero-temperature results, while ∆Z measures temperature
effects on the tensor structure of the gluon propagator.
The results indicate that G and Z are nearly temperature
independent; see Figs. 2 and 3. The momentum scale is
obtained from the corresponding T = 0 calculation [22].
Note that for the 243 grid the ultraviolet cutoff of 4.7 GeV
corresponds to a spatial volume of approximately 6 fm3.
Unfortunately, it is not possible to extract reliable infrared
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Fig. 2. The ghost dressing function G in the infrared region
at different temperatures (243 momentum grid)
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Fig. 3. The averaged gluon dressing function Z in the infrared
region at different temperatures (243 momentum grid)

exponents from these torus results. Hence, the changes
can be either due to changes in the infrared coefficient
or in the exponent. The ghost dressing would suggest a
change in the exponent, while the gluon dressing points to
a change in the coefficient. Nevertheless, the results allow
one to conclude that the power laws persist in the infrared
regime. The changes of the ghost dressing functions with
respect to temperature are more likely fluctuations due
to finite-size effects rather than an intrinsic temperature
effect. Figure 4 displays that ∆Z is temperature depen-
dent to a rather large extent at intermediate momenta.
The temperature dependences of Z0 and Zm have oppo-
site signs and ∆Z is of the order of a few percent in the
intermediate momentum region compared to the sum. Up
to about 1 GeV the shape of ∆Z can be explained by just
changing the infrared coefficient and then connecting con-
tinuously to the ultraviolet regime, where ∆Z has to van-
ish. The data presented here are for a cutoff of 4.7 GeV.
For other cutoffs the results vary slightly, in a range which
is expected for such low cutoffs.
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Fig. 4. The difference ∆Z of the gluon dressing functions at
different temperatures (243 momentum grid)
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Fig. 5. Different Matsubara modes of the ghost dressing func-
tion at T = 140 MeV (243 momentum grid)

For the higher Matsubara modes the dressing functions
have an interesting property: the combined gluon dressing
Z and the ghost dressing G seem to depend only on the
four-momentum (at least approximately), while the higher
modes of ∆Z are not O(4) invariant, as expected (see
Figs. 5–7)1.

Due to the numerical method, we are biased to stay in
the confining phase. Nevertheless it is surprising that we
find qualitatively similar solutions also for high tempera-
tures. These solutions are numerically stable up to tem-
peratures allowed by the UV cutoff, 2πT ≈ Λ. In order to
draw conclusions on the character of the phase transition
we need results from other numerical methods to support
this finding. If so, our results would indicate a first order
phase transition. Figures 8 and 9 show that the changes
of the “wrong-phase” solutions with temperature are also
smooth and are qualitatively the same as for small tem-
peratures.

1 The first Matsubara mode of the ghost dressing (see Fig. 5)
deviates slightly from O(4) invariance. This is due to the torus
regularization.
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Fig. 7. Different Matsubara modes of the difference ∆Z of
the gluon dressing functions at T = 140 MeV (243 momentum
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The running coupling α(k2), being a renormalization
group invariant quantity, is of special interest. In Landau-
gauge at zero temperature, a non-perturbative running
coupling α(p2) can be defined via the relation

α(p2) = α(µ2)G2(p2, µ2)Z(p2, µ2) . (21)

In order to smoothly connect to the results for vanishing
temperature we take for Z the linear combination (12):

α(n, p2
3, T )

:= α(µ2)G2(n, p2
3, µ

2, T )Z(n, p2
3, µ

2, T ). (22)

As expected from the results for the dressing functions, the
coupling (22) shows no temperature dependence beyond
numerical uncertainties.

5 CJT action and phase transition

As we want to investigate the phase transition it is nec-
essary to compute thermodynamic quantities. In order to
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Fig. 8. The ghost dressing function G at high temperatures
(243 momentum grid)
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Fig. 9. The averaged gluon dressing function Z at high tem-
peratures (243 momentum grid)

do so, we need the temperature-dependent effective action
for vanishing fields and full propagators. Since we want to
calculate the temperature dependence of different quan-
tities, we need to assure energy conservation. Thus the
DSEs, which we use to compute the dressing functions,
have to be the variational equations of the energy func-
tional, i.e. of the effective action. We take the known 2PI
effective action by Cornwall, Jackiw and Tomboulis (CJT)
[14] for fully dressed propagators and bare vertices2. First
we discuss the action for vanishing temperature, given by
the formula (c.f. [15])

V (Dµν , DG) = V0(Dµν , DG) + V2(Dµν , DG) , (23)
V0(Dµν , DG)

=
∫

d4p

(2π)4
Tr

{
1
2

[
D0

µα(p)−1Dαν(p) − δµν

]
2 Recently there has been renewed interest in the formalism

also for higher particle irreducibilities [28], however, the cor-
responding treatment is beyond the scope of this paper. Any-
way, our truncation scheme only includes one-loop graphs for
the propagator DSEs, so the action contains at most two-loop
diagrams and is thus 2PI.
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Fig. 10. Diagrammatic representation of the two-loop contributions to the effective action
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Fig. 11. V2(Dµν , DG) after inserting the reintegrated DSEs

− 1
2

ln
(
D0

µα
−1

(p)Dαν(p)
)

− [
D0

G(p)−1DG(p) − 1
]

+ ln
(
D0

G(p)−1DG(p)
)}

, (24)

where we already employed Euclidean space-time conven-
tions.

In a truncation scheme with bare vertex functions only
the diagrams of Fig. 10 contribute to the effective action.
For our truncation to the gluon propagator DSE, the
three-gluon vertex (10) is constructed from the dressing
functions of the propagators. However, throughout this
investigation we neglect variations of the vertex with re-
spect to the gluon and ghost dressing functions, and thus
employ

V2(Dµν , DG)

=
1
2

∫
d4p

(2π)4

∫
d4q

(2π)4

×ipµDµν(p − q)iqνDG(q)DG(p)

− 1
12

∫
d4p

(2π)4

∫
d4q

(2π)4

× { Γ 0
µρα(p, −p − q, q)Dαβ(q)Dρσ(p + q)

× Γ 0
βσν(−q, p + q, −p)Dµν(p)

}
. (25)

The variation of the action (23) with respect to the propa-
gators reproduces the Dyson–Schwinger equations for the
gluon and ghost propagators (6) and (5), however, with
bare three-gluon vertex. Multiplying the gluon DSE with
the full gluon propagator and the ghost DSE with the full
ghost propagator and performing the trace in color and
Lorentz indices and the integral in momentum space, we
recover the two-loop diagrams of the CJT action. This
results in

V2(Dµν , DG)

=
∫

d4p

(2π)4
Tr

{
−1

6
[
D0

µα(p)−1Dαν(p)− δµν ]

+
1
3

[
D0

G(p)−1DG(p) − 1
]}

; (26)

see Fig. 11 for a graphical representation. Inserting (26)
and the explicit expression for the propagators in depen-
dence on the dressing functions in (23) one obtains

V (Z, G)

= NC

∫
d4p

(2π)4

{(
Z3Z(p2) − 1

) − 3
2

ln
(
Z3Z(p2)

)

−2
3

(
Z̃3G(p2) − 1

)
+ ln

(
Z̃3G(p2)

)}
. (27)

For solving the corresponding DSEs numerically, we in-
troduce a momentum cutoff Λ. Thus the renormalization
constants Z3 for the gluon wave function and Z̃3 for the
ghost propagator not only depend on the renormalization
scale µ but also on the cutoff3. Defining x := p2 one has

V (Z, G)

=
NC

(4π)2

∫ Λ2

0
dxx {(Z3(µ, Λ)Z(x, µ) − 1)

− 3
2

ln (Z3(µ, Λ)Z(x, µ))

− 2
3

(
Z̃3(µ, Λ)G(x, µ) − 1

)

+ ln
(
Z̃3(µ, Λ)G(x, µ)

)}
. (28)

This quantity diverges like Λ4, if the renormalization con-
stants are only known to a finite accuracy. Furthermore,
the three-gluon vertex is dressed by construction, which
is not accounted for by the above action. In fact the fol-
lowing fit to the cutoff dependence of the action:

f(x) = ax2 + c (29)

3 The propagators are cutoff independent within numerical
accuracy as soon as Λ > 15 GeV.
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yields

a = −3.2 × 10−3,

c = (9.8 ± 1.3) × 10−10 GeV4. (30)

The result should be interpreted as vanishing of the effec-
tive action as the first term is of purely numerical origin
and the second term is much too small to correspond to a
scale of the system, c

1
4 ≈ 5.6 MeV.

At finite temperatures, the integral measure in (27)
has to be replaced by that for the space-time torus, see
(7). Furthermore, the finite-temperature gluon propagator
with its additional tensor structure (2) has to be inserted.
Finally we get for the temperature-dependent 1-particle
irreducible CJT action

V (T ) = NCT

+∞∑
n=−∞

∫
d3q

(2π)3

×
{

2
3

(Z3mZm(ωn, |p|) − 1) − ln (Z3mZm(ωn, |p|))

+
1
3

(Z30Z0(ωn, |p|) − 1) − 1
2

ln (Z30Z0(ωn, |p|))

− 2
3

(
Z̃3G(ωn, |p|) − 1

)
+ ln

(
Z̃3G(ωn, |p|)

)}
. (31)

This effective action is temperature independent within
numerical uncertainties up to T = 250 MeV. For higher
temperatures large variations are seen. Whether this is
connected to the phase transition remains to be seen.

6 Conclusions

In this paper we have extended a truncation scheme for
the Dyson–Schwinger equations of Yang–Mills theories in
Landau-gauge to non-vanishing temperatures using the
imaginary-time formalism for quantum field theories in
thermal equilibrium. We have obtained numerical solu-
tions for the gluon and ghost propagators. Furthermore
we have derived an expression for the CJT action of the
interacting Yang–Mills theory, depending on dressed prop-
agators.

The results can be summarized as follows. Temper-
ature dependences of the ghost and gluon propagators
are rather weak and the power-law behavior in the in-
frared, already observed at vanishing temperature, per-
sists. The corresponding CJT action vanishes (within nu-
merical uncertainties) and does not possess any significant
temperature dependence up to T = 250 MeV. Thus glu-
ons and ghost neither build up any pressure nor give rise
to a finite entropy of the system. An improved numeri-
cal method, especially one suitable for an infinite volume,
is, of course, desirable to study thermodynamic quantities
below the phase transition. Corresponding investigations
are currently performed.
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Appendix A:
Integral kernels for the DSEs

The complete algebraic expressions for the Lorentz struc-
tures that occur in the DSEs for the different products of
dressing functions are given here. First, there are the two
kernels of the ghost equation (17):

AT(k, q) = −k2q2 − (k · q)2

(k − q)2
, (A.1)

AL(k, q) = −k2q2 − (kq)2

(k − q)2
+

k2q2 − (k · q)2

(k − q)2
. (A.2)

Secondly, the kernel of the ghost loop and the four kernels
of the gluon loop for the heat-bath transversal part of the
gluon equation (18):

R(k, q) = −
(
q2k2 − (k · q)2

)
k2 , (A.3)

MT(k, q) = −2
q2k2 − (k · q)2

k2q2p2 (A.4)

× (
(k · q)2 + k2q2 + 2p2(k2 + q2)

)
,

M1(k, q) = −2

(
q0k · q − k0q

2
)2 (

(k · p)2 + k2p2
)

k2q2p2q2 ,

(A.5)

M2(k, q) = −2

(
p0k · p − k0p

2
)2 (

(k · q)2 + k2q2
)

k2q2p2p2 ,

(A.6)

ML(k, q) = −2

(
q2k2 − (k · q)2

) (
q2p2 − q0p0qp

)2

k2q2p2k2p2 .

(A.7)

And third the corresponding kernels for the heat-bath lon-
gitudinal part (19):

P (k, q) = −
(
q0k

2 − k0k · q
)2

k2k2 , (A.8)

NT(k, q) = −2

(
k0k · q − q0k

2
)2 (

(q · p)2 + q2p2
)

k2q2p2k2 ,

(A.9)

N1(k, q) = −2

(
q2k2 − (k · q)2

) (
k2q2 − k0q0kq

)2

k2q2p2k2p2 ,

(A.10)

N2(k, q) = −2

(
q2k2 − (k · q)2

) (
k2p2 − k0p0kp

)2

k2q2p2k2q2 ,
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Fig. 12. The ghost dressing function G at T = 140 MeV on
different momentum grids
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Fig. 13. The averaged gluon dressing function Z at T =
140 MeV on different momentum grids

(A.11)

NL(k, q) = − 1
2k2q2p2k2q2p2

[
(p · k)q2 (

k0p
2 + p0k

2)
− (p · q)k2 (

p0q
2 + q0p

2)
+ (k · q)p2 (

k0q
2 − q0k

2)]2 . (A.12)

Appendix B: Finite size effects

As expected, finite-size effects cannot be neglected com-
pletely but are rather small and change the results only
in a quantitative way, as can be seen from Figs. 12–14.
The deviations tend to increase for higher temperatures,
since the ultraviolet cutoff is rather low (4.7 GeV). Finite
size effects do not alter our conclusions. Especially, the
temperature estimate of (8) is fairly independent of the
finite-momentum lattice size.
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Fig. 14. The difference ∆Z of the gluon dressing functions at
T = 140 MeV on different momentum grids
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